editing disabled

The mina is a unit of interval size which has been proposed by George Secor and Dave Keenan, and which is defined as 1/2460 of an octave, the step size of 2460edo. 2460 is divisible by both 12 and 41, two important systems, and it's been suggested that degrees and minutes can be used to express values in it, so that for instance 3/2, which is 1439 minas, could be denoted by 23°59', meaning very slightly flat of the 24\41 41edo fifths. This works out since 41 * 60 = 2460; an octave is therefore expressed as if it were an angle of 41 degrees.

Other popular systems that can be represented exactly in whole numbers of minas include 10edo and 15edo. Moreover a cent is exactly 2.05 minas, and a mem, 1\205 octaves, is exactly 12 minas.

The following table lists some intervals which may be represented exactly in minas and in degrees and minutes, with the sizes listed in both cents and minas and expressed as degrees and minutes.
interval
size in
cents
size in
minas
size as degrees
and minutes
1\2460
0.488
1
1'
1\205
5.835
12
12'
1\41
29.268
60

1\15
80
164
2°44'
1\12
100
205
3°25'
1\10
120
246
4°6'
1\6
200
410
6°50'
1\5
240
492
8°12'
1\4
300
615
10°15'
1\3
400
820
13°40'
2\5
480
984
16°24'
5\12
500
1025
17°5'
1\2
600
1230
20°30'
7\12
700
1435
23°55'
3\5
720
1476
24°36'
2\3
800
1640
27°20'
3\4
900
1845
30°45'
4\5
960
1960
32°48'
5\6
1000
2050
34°10
11\12
1100
2255
37°35
2/1
1200
2460
41°

Another notable feature of the mina is the accuracy and breadth of it's approximation to just intervals. Accordingly it is hardly necessary to express intervals in non-integer values of mina, something that arguably cannot be said of cents. 2460edo It is uniquely consistent through to the 27-limit, which is not very remarkable in itself (388edo is the first such system), but what is remarkable is the degree of accuracy to which it represents the 27-limit intervals. It is also a zeta peak edo and has a lower 19-limit relative error than any edo until 3395, and a lower 23-limit relative error than any until 8269. Also it has a lower 23-limit TE loglfat badness than any smaller edo and less than any until 16808.

Below the intervals of the 27-limit tonality diamond are tabulated, with the sizes listed in both cents and minas and expressed as degrees and minutes (rounded to the nearest minute). The value in minas, rounded to the nearest integer, can be found by applying the 23-limit patent val <2460 3899 5712 6906 8510 9103 10055 10450 11128| for 2460edo; this will not work for 1200edo and cents.
interval
ratio
size
in cent
size
in mina
size as degrees
and minutes
1
0.000
0.000

28/27
62.961
129.070
2°9'
27/26
65.337
133.942
2°14'
26/25
67.900
139.195
2°19'
25/24
70.672
144.878
2°25'
24/23
73.681
151.045
2°31'
23/22
76.956
157.761
2°38'
22/21
80.537
165.101
2°45'
21/20
84.467
173.158
2°53'
20/19
88.801
182.041
3°2'
19/18
93.603
191.886
3°12'
18/17
98.955
202.857
3°23'
17/16
104.955
215.159
3°35'
16/15
111.731
229.049
3°49'
15/14
119.443
244.858
4°5'
14/13
128.298
263.011
4°23'
27/25
133.238
273.137
4°33'
13/12
138.573
284.074
4°44'
25/23
144.353
295.924
4°56'
12/11
150.637
308.806
5°9'
23/21
157.493
322.862
5°23'
11/10
165.004
338.259
5°38'
21/19
173.268
355.199
5°55'
10/9
182.404
373.928
6°14'
19/17
192.558
394.743
6°35'
28/25
196.198
402.207
6°42'
9/8
203.910
418.016
6°58'
26/23
212.253
435.119
7°15'
17/15
216.687
444.208
7°24'
25/22
221.309
453.684
7°34'
8/7
231.174
473.907
7°54'
23/20
241.961
496.019
8°16'
15/13
247.741
507.869
8°28'
22/19
253.805
520.300
8°40'
7/6
266.871
547.085
9°7'
27/23
277.591
569.061
9°29'
20/17
281.358
576.785
9°37'
13/11
289.210
592.880
9°53'
32/27
294.135
602.977
10°3'
19/16
297.513
609.902
10°10'
25/21
301.847
618.785
10°19'
6/5
315.641
647.065
10°47'
23/19
330.761
678.061
11°18'
17/14
336.130
689.065
11°29'
28/23
340.552
698.131
11°38'
11/9
347.408
712.186
11°52'
27/22
354.547
726.821
12°7'
16/13
359.472
736.918
12°17'
21/17
365.825
749.942
12°30'
26/21
369.747
757.981
12°38'
5/4
386.314
791.943
13°12'
34/27
399.090
818.135
13°38'
24/19
404.442
829.106
13°49'
19/15
409.244
838.951
13°59'
14/11
417.508
855.891
14°15'
23/18
424.364
869.947
14°30'
32/25
427.373
876.114
14°36'
9/7
435.084
891.922
14°52'
22/17
446.363
915.043
15°15'
13/10
454.214
931.139
15°31'
30/23
459.994
942.988
15°43'
17/13
464.428
952.077
15°52'
21/16
470.781
965.101
16°5'
25/19
475.114
973.985
16°14'
4/3
498.045
1020.992
17°1'
27/20
519.551
1065.080
17°45'
23/17
523.319
1072.804
17°53'
19/14
528.687
1083.809
18°4'
34/25
532.328
1091.272
18°11'
15/11
536.951
1100.749
18°21'
26/19
543.015
1113.180
18°33'
11/8
551.318
1130.202
18°50'
18/13
563.382
1154.934
19°15'
25/18
568.717
1165.871
19°26'
32/23
571.726
1172.038
19°32'
7/5
582.512
1194.150
19°54'
38/27
591.648
1212.878
20°13'
24/17
597.000
1223.849
20°24'
17/12
603.000
1236.151
20°36'
27/19
608.352
1247.122
20°47'
10/7
617.488
1265.850
21°6'
23/16
628.274
1287.962
21°28'
36/25
631.283
1294.129
21°34'
13/9
636.618
1305.066
21°45'
16/11
648.682
1329.798
22°10'
19/13
656.985
1346.820
22°27'
22/15
663.049
1359.251
22°39'
25/17
667.672
1368.728
22°49'
28/19
671.313
1376.191
22°56'
34/23
676.681
1387.196
23°7'
40/27
680.449
1394.920
23°15'
3/2
701.955
1439.008
23°59'
38/25
724.886
1486.015
24°46'
32/21
729.219
1494.899
24°55'
26/17
735.572
1507.923
25°8'
23/15
740.006
1517.012
25°17'
20/13
745.786
1528.861
25°29'
17/11
753.637
1544.957
25°45'
14/9
764.916
1568.078
26°8'
25/16
772.627
1583.886
26°24'
36/23
775.636
1590.053
26°30'
11/7
782.492
1604.109
26°44'
30/19
790.756
1621.049
27°1'
19/12
795.558
1630.894
27°11'
27/17
800.910
1641.865
27°22'
8/5
813.686
1668.057
27°48'
21/13
830.253
1702.019
28°22'
34/21
834.175
1710.058
28°30'
13/8
840.528
1723.082
28°43'
44/27
845.453
1733.179
28°53'
18/11
852.592
1747.814
29°8'
23/14
859.448
1761.869
29°22'
28/17
863.870
1770.935
29°31'
38/23
869.239
1781.939
29°42'
5/3
884.359
1812.935
30°13'
42/25
898.153
1841.215
30°41'
32/19
902.487
1850.098
30°50'
27/16
905.865
1857.023
30°57'
22/13
910.790
1867.120
31°7'
17/10
918.642
1883.215
31°23'
46/27
922.409
1890.939
31°31'
12/7
933.129
1912.915
31°53'
19/11
946.195
1939.700
32°20'
26/15
952.259
1952.131
32°32'
40/23
958.039
1963.981
32°44'
7/4
968.826
1986.093
33°6'
44/25
978.691
2006.316
33°26'
30/17
983.313
2015.792
33°36'
23/13
987.747
2024.881
33°45'
16/9
996.090
2041.984
34°2'
25/14
1003.802
2057.793
34°18'
34/19
1007.442
2065.257
34°25'
9/5
1017.596
2086.072
34°46'
38/21
1026.732
2104.801
35°4'
20/11
1034.996
2121.741
35°22'
42/23
1042.507
2137.138
35°37'
11/6
1049.363
2151.194
35°51'
46/25
1055.647
2164.076
36°4'
24/13
1061.427
2175.926
36°16'
50/27
1066.762
2186.863
36°27'
13/7
1071.702
2196.989
36°37'
28/15
1080.557
2215.142
36°55'
15/8
1088.269
2230.951
37°11'
32/17
1095.045
2244.841
37°23'
17/9
1101.045
2257.143
37°37'
36/19
1106.397
2268.114
37°48'
19/10
1111.199
2277.959
37°58'
40/21
1115.533
2286.842
38°7'
21/11
1119.463
2294.899
38°15'
44/23
1123.044
2302.239
38°22'
23/12
1126.319
2308.955
38°29'
48/25
1129.328
2315.122
38°35'
25/13
1132.100
2320.805
38°41'
52/27
1134.663
2326.058
38°46'
27/14
1137.039
2330.930
38°51'
2
1200.000
2460.000
41°